D-VAE: A Variational Autoencoder for Directed
Acyclic Graphs

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen
Department of Computer Science and Engineering
Washington University in St. Louis
{muhan, jiang.s, z.cui, garnett}@wustl.edu , chen@cse.wustl.edu

Abstract

Graph structured data are abundant in the real world. Among different graph
types, directed acyclic graphsAGs) are of particular interest to machine learning
researchers, as many machine learning models are realized as computations on
DAGS, including neural networks and Bayesian networks. In this paper, we study
deep generative models foaGs, and propose a novehG variational autoencoder
(D-vAE). To encodebAGs into the latent space, we leverage graph neural networks.
We propose an asynchronous message passing scheme that allows encoding the
computations omAGS, rather than using existing simultaneous message passing
schemes to encode local graph structures. We demonstrate the effectiveness of
our proposea-VAE through two tasks: neural architecture search and Bayesian
network structure learning. Experiments show that our model not only generates
novel and validbDAGs, but also produces a smooth latent space that facilitates
searching foDAGs with better performance through Bayesian optimization.

1 Introduction

Many real-world problems can be posed as optimizing of a directed acyclic graph (epresenting
some computational task. For example, the architecture of a neural netwankdés dhe problem

of searching optimal neural architectures is essentiatin@a optimization task. Similarly, one
critical problem in learning graphical models — optimizing the connection structures of Bayesian
networks [L], is also abAG optimization taskDAG optimization is pervasive in other elds as well.

In electronic circuit design, engineers need to optintize circuit blocks not only to realize target
functions, but also to meet speci cations such as power usage and operating temperature.

DAG optimization is a hard problem. Firstly, the evaluation afsG's performance is often time-
consuming (e.g., training a neural network). Secondly, state-of-the-art black-box optimization
techniques such as simulated annealing and Bayesian optimization primarily operate in a continuous
space, thus are not directly applicablentec optimization due to the discrete naturemi{cs. In
particular, to make Bayesian optimization work for discrete structures, we need a kernel to measure
the similarity between discrete structures as well as a method to explore the design space and
extrapolate to new points. Principled solutions to these problems are still lacking.

Is there a way to circumvent the trouble from discreteness? The answer is yes. If emlcad all

DAGS to a continuous spacand make the space relatively smooth, we might be able to directly use
principled black-box optimization algorithms to optimizeGs in this space, or even use gradient
methods if gradients are available. Recently, there has been increased interest in training generative
models for discrete data types such as molece8][arithmetic expressiondl], source code

[5], undirected graphsg], etc. In particular, Kusner et aJ3] developed a grammar variational
autoencoderg-VvAE) for molecules, which is able to encode and decode molecules into and from
acontinuous latent spaceallowing one to optimize molecule properties by searching in this well-

33rd Conference on Neural Information Processing Systems (NeurlPS 2019), Vancouver, Canada.

behaved space instead of a discrete space. Inspired by this work, we propose to also train a variational
autoencoder foDAGS, and optimizeAG structures in the latent space via Bayesian optimization.

To encodeDAGS, we leverage graph neural networksi(s) [7]. Traditionally, aGNN treats all

nodes symmetrically, and extracts local features around nodsisioytaneouslypassing all nodes'
neighbors' messages to themselves. However, such a simultaneous message passing scheme is
designed to learn local structure features. It might not be suitabieAfes, since in @AG: 1) nodes

are not symmetric, but intrinsically have some ordering based on its dependency structure; and 2) we
are more concerned about the computation represented by the entire graph, not the local structures.

In this paper, we propose asynchronous message passing scheteeencode the computations

on DAGS. The message passing no longer happens at all nodes simultaneously, but respects the
computation dependencies (the partial order) among the nodes. For example, suppose node A has
two predecessors, B and C, imaG. Our scheme does not perform feature learning for A until the
feature learning on B and C are both nished. Then, the aggregated message from B and C is passed
to A to trigger As feature learning. This means, although the message passing is not simultaneous, it
is also not completely unordered — some synchronization is still required. We incorporate this feature
learning scheme in both our encoder and decoder, and propaseariational autoencodefD-VAE).

D-VAE has an excellent theoretical property for modelirgss— we prove thab-VAE caninjectively
encodecomputationson DAGS. This means, we can build a mapping from the discrete space to a
continuous latent space so thleatery DAG computation has itanique embedding in the latent space,
whichjusti es performing optimization in the latent space instead of the original design space.

Our contributions in this paper are: 1) We prop0seAE, a variational autoencoder forGs using

a novel asynchronous message passing scheme, which is able to injectively encode computations.
2) Based orp-VAE, we propose a newAG optimization framework which performs Bayesian
optimization in a continuous latent space. 3) We aplyAE to two problems, neural architecture
search and Bayesian network structure learning. Experiments shon-tiaa not only generates

novel and validAGs, but also learns smooth latent spaces effective for optimzimystructures.

2 Related work

Variational autoencoder (VAE) [8, 9] provides a framework to learn both a probabilistic generative
modelp (xjz) (the decoder) as well as an approximated posterior distribati¢ejx) (the encoder).
VAE is trained through maximizing the evidence lower bound

L(: iX)= Ez g @nllogp (xjz)] KL[q (zjx)kp(2)]: 1)

The posterior approximation (zjx) and the generative model(xjz) can in principle take arbitrary
parametric forms whose parameterand are output by the encoder and decoder networks. After
learningp (Xxjz), we can generate new data by decoding latent space vecsarspled from the
prior p(z). For generating discrete dafa(xjz) is often decomposed into a series of decision steps.

Deep graph generative modelsise neural networks to learn distributions over graphs. There are
mainly three types: token-based, adjacency-matrix-based, and graph-based. Token-based models
[2, 3, 10] represent a graph as a sequence of tokens (e.g., characters, grammar rules) and model these
sequences USIrgNNS. They are less general since task-speci ¢ graph grammars sishi iess

for molecules 11] are required. Adjacency-matrix-based modéig [L3, 14, 15, 16] leverage the

proxy adjacency matrix representation of a graph, and generate the matrix in one shot or generate
the columns/entries sequentially. In contrast, graph-based md@&gjélg [L8, 19] seem more natural,

since they operate directly on graph structures (instead of proxy matrix representations) by iteratively
adding new nodes/edges to a graph based on the existing graph and node states. In addition, the
graph and node states are learnedjlaph neural networks (GNNs), which have already shown

their powerful graph representation learning ability on various tasks [20, 21, 22, 23, 24, 25, 26, 27].

Neural architecture search (NAS) aims at automating the design of neural network architectures.
It has seen major advances in recent yead8; 29, 30, 31, 32, 33]. See Hutter et al[34] for

an overview. NAS methods can be mainly categorized into: 1) reinforcement learning methods
[28, 31, 33] which train controllers to generate architectures with high rewards in terms of validation
accuracy, 2) Bayesian optimization based meth88g\Which de ne kernels to measure architecture
similarity and extrapolate the architecture space heuristically, 3) evolutionary appro2ghes B7]

which use evolutionary algorithms to optimize neural architectures, and 4) differentiable methods

[32, 38, 39] which use continuous relaxation/mapping of neural architectures to enable gradient-based
optimization. In Appendix A, we include more detailed discussion on several most related works.

Bayesian network structure learning @NSL) is to learn the structure of the underlying Bayesian
network from observed datd(), 41, 42, 43]. Bayesian network is a probabilistic graphical model
encoding conditional dependencies among variables viaza[1]. One main approach f@ansL

is score-based search, i.e., de ne some “goodness-of- t” score for network structures, and search
for one with the optimal score in the discrete design space. Commonly used scores Biclude
andsDeu, mostly based on marginal likelihootl.[Due to thenp-hardness44], however, exact
algorithms such as dynamic programmidg][or shortest path approache]47] can only solve
small-scale problems. Thus, people have to resort to heuristic methods such as local search and
simulated annealing, etc. [48NsL is still an active research area [41, 43, 49, 50, 51].

3 DAG variational autoencoder (D-VAE)

In this section, we describe our proposeslc variational autoencodeDfVAE). D-VAE uses an
asynchronous message passing scheme to encode and deasdén contrast to the simultaneous
message passing in traditior@liNs, D-VAE allows encodingomputationsather tharstructures

De nition 1. (Computation) Given a set of elementary operatio®s a computationC is the
composition of a nite number of operations2 O applied to an input signat, with the output of
each operation being the input to its succeeding operations.

The set of elementary operatiofs
depends on speci ¢ applications. For
example, when we are interested in
computations given by a calculat@,

15 - will be the set of all the operations de-

o " ned on the functional buttons, such

Figure 1: Computations can be representeddgs. Note thatthe gs+, | | | etc. When modeling
left and rightbAGs represent the same computation. neural networksO can be a prede-

ned set of basic layers, such as 3 convolution, 5 5 convolution, 2 2 max pooling, etc. A
computation can be represented as a directed acyclic gray#t),(with directed edges representing
signal ow directions among node operations. The graph must be acyclic, since otherwise the input
signal will go through an in nite number of operations so that the computation never stops. Figure 1
shows two examples. Note that the two differeats in Figure 1 represent the same computation,

as the input signal goes through exactly the same operations. We discuss it further in Appendix B.

3.1 Encoding

We rstintroduce the encoder @-VAE, which can be seen as a graph neural netwerk\) using

an asynchronous message passing scheme. Givag &, we assume there is a single starting node
which does not have any predecessors (e.g., the input layer of a neural architecture). If there are
multiple such nodes, we add a virtual starting node connecting to all of them.

Similar to standar@&NNs, we use an update functi@hto compute the hidden state of each node
based on its neighbors' incoming message. The hidden state ofrisdgven by:
hy = U(xy; hY); @)

wherex, is the one-hot encoding ofs type, anchi? represents the incoming message.tbi? is
given by aggregating the hidden states'sfpredecessors using an aggregation funcéion

h"=A(hy:u! v); (3)
whereu ! v denotes there is a directed edge froo v, and hy :u! v represents a multiset
of v's predecessors' hidden states. If an empty set is inpAt oorresponding to the case for the
starting node without any predecessors), wéletutput an all-zero vector.

Compared to the traditional simultaneous message passingyAE the message passing for a node

must wait until all of its predecessors' hidden states have already been computed. This simulates
how a computation is really performed — to execute some operation, we also need to wait until all
its input signals are ready. So how to make sure all the predecessor states are available when a new
node comes? One solution is that we can sequentially perform message passing for nodes following a
topological orderingof the DAG. We illustrate this encoding process in Figure 2.

Aggregate messages
from predecessors

Update the hidden
state of this node

Figure 2: An illustration of the encoding procedure for a neural architecture. Following a topological ordering,
we iteratively compute the hidden state for each node (red) by feeding in its predecessors’ hidden states (blue).
This simulates how an input signal goes through a computation, with h,, simulating the output signal at node v.

After all nodes’ hidden states are computed, we use h,, , the hidden state of the ending node v,,
without any successors, as the output of the encoder. Then we feed h,,, to two MLPs to get the mean
and variance parameters of the posterior approximation ¢, (z|G) in (1). If there are multiple nodes
without successors, we again add a virtual ending node connecting from all of them.

Note that although topological orderings are usually not unique for a DAG, we can take any one of
them as the message passing order while ensuring the encoder output is always the same, revealed by
the following theorem. We include all theorem proofs in the appendix.

Theorem 1. The D-VAE encoder is invariant to node permutations of the input DAG if the aggregation
function A is invariant to the order of its inputs.

Theorem 1 means isomorphic DAGs are always encoded the same, no matter how we index the nodes.
It also indicates that so long as we encode a DAG complying with its partial order, we can perform
message passing in arbitrary order (even parallelly for some nodes) with the same encoding result.

The next theorem shows another property of D-VAE that is crucial for its success in modeling DAGs,
i.e., it is able to injectively encode computations on DAGS.

Theorem 2. Let G be any DAG representing some computation C. Let vy, ..., v, be its nodes
following a topological order each representing some operation 0;, 1 < 1 < n, where v,, is the ending
node. Then, the encoder of D-VAE maps C to h,,, injectively if A is injective and U is injective.

The significance of Theorem 2 is that it provides a way to injectively encode computations on
DAGS, so that every computation has a unique embedding in the latent space. Therefore, instead of
performing optimization in the original discrete space, we may alternatively perform optimization
in the continuous latent space. In this well-behaved Euclidean space, distance is well defined, and
principled Bayesian optimization can be applied to search for latent points with high performance
scores, which transforms the discrete optimization problem into an easier continuous problem.

Note that Theorem 2 states D-VAE injectively encodes computations on graph structures, rather
than graph structures themselves. Being able to injectively encode graph structures is a very strong
condition, as it implies an efficient algorithm to solve the challenging graph isomorphism (GI)
problem. Luckily, here what we really care about are computations instead of structures, since we
do not want to differentiate two different structures G; and G5 as long as they represent the same
computation. Figure 1 shows such an example. Our D-VAE can identify that the two DAGs in
Figure 1 actually represent the same computation by encoding them to the same vector, while those
encoders focusing on encoding structures might fail to capture the underlying computation and output
different vectors. We discuss more advantages of Theorem 2 in optimizing DAGs in Appendix G.

To model and learn the injective functions .4 and U, we resort to neural networks thanks to the
universal approximation theorem [52]. For example, we can let A be a gated sum:

by =) g(h,) ©m(h,),)
where m is a mapping network and g is a gating network. Such a gated sum can model injective
multiset functions [53], and is invariant to input order. To model the injective update function U/, we
can use a gated recurrent unit (GRU) [54], with hi; treated as the input hidden state:
h, = GRU,(x,, h™). (5)
Here the subscript e denotes “encoding”. Using a GRU also allows reducing our framework to
traditional sequence to sequence modeling frameworks [55], as discussed in 3.4.

each step according to the decoding distributions described in Section 3.2 and calculate subsequent
decoding distributions based on the sampled results.

3.4 Discussion and model extensions

Relation with RNNs. TheDb-VAE encoder and decoder can be reduced to ordiramns when the
input DAG is reduced to a chain of nodes. Although we propopseE from aGNN's perspective,
our model can also be seen as a generalization of traditional sequence modeling fram&&d&s [
where a timestamp depends only on the timestamp immediately before it,da¢hease where a
timestamp has multiple previous dependencies. As spesias$, similar ideas have been explored
for trees [57, 17], where a node can have multiple incoming edges yet only one outgoing edge.

Bidirectional encoding. D-VAE's encoding process can be seen as simulating how an input signal
goes through ®AG, with h, simulating the output signal at each nodeThis is also known as

forward propagatiorin neural networks. Inspired by the bidirectiomaiN [58], we can also use
anothercru to reversely encode@ac (i.e., reverse all edge directions and encodenthe again),

thus simulating théackward propagatiomoo. After reverse encoding, we get two ending states,
which are concatenated and linearly mapped to their original size as the nal output state. We nd this
bidirectional encoding can increase the performance and convergence speed on neural architectures.

Incorporating vertex semantics.Note thatb-VAE currently uses one-hot encoding of node types
asXy, which does not consider the semantic meanings of different node types. For example, a
3 3convolution layer might be functionally very similar tdba 5 convolution layer, while being
functionally distinct from a max pooling layer. We expect incorporating such semantic meanings of
node types to be able to further impravevae's performance. For example, we can use pretrained
embeddings of node types to replace the one-hot encoding. We leave it for future work.

4 Experiments

We validate the proposdamhG variational autoencodeb¢VvAE) on two DAG optimization tasks:

* Neural architecture search.Our neural network dataset contains 19,020 neural architectures from
the ENAS software B3]. Each neural architecture has 6 layers (excluding input and output layers)
sampled from3 3and5 5convolutions3 3and5 5 depthwise-separable convolutions
[59], 3 3 max pooling, andB 3 average pooling. We evaluate each neural architecture's
weight-sharing accuracyf] (a proxy of the true accuracy) on CIFAR-16(as its performance
measure. We split the dataset into 90% training and 10% held-out test sets. We use the training set
for VAE training, and use the test set only for evaluation.

» Bayesian network structure learning. Our Bayesian network dataset contains 200,000 random
8-node Bayesian networks from thalearn package1] in R. For each network, we compute the
Bayesian Information Criteriors{(C) score to measure the performance of the network structure
for tting the Asia dataset2]. We split the Bayesian networks into 90% training and 10% test
sets. For more details, please refer to Appendix I.

Following [3], we do four experiments for each task:

» Basic abilities of VAE models. In this experiment, we perform standard tests to evaluate the
reconstructive and generative abilities ofge model forbAGs, including reconstruction accuracy,
prior validity, uniqueness and novelty.

* Predictive performance of latent representation.We test how well we can use the latent embed-
dings of neural architectures and Bayesian networks to predict their performances.

» Bayesian optimization. This is the motivating application af-vAE. We test how well the learned
latent space can be used for searching for high-performancs through Bayesian optimization.

 Latent space visualization.We visualize the latent space to qualitatively evaluate its smoothness.

Since there is little previous work anaG generation, we compaie-VAE with four generative
baselines adapted fonGs: S-VAE, GrapRNN, GCN andDeegMG. Among them s-vAE [56] and
GrapRNN [13] are adjacency-matrix-based methodsN [22] and DeegsMG [6] are graph-based
methods which use simultaneous message passing to emalesd We include more details about
these baselines and discusyAE's advantages over them in Appendix J. The training details are in
Appendix K. All the code and data are availabléntps://github.com/muhanzhang/D-VAE

Table 1: Reconstruction accuracy, prior validity, uniqgueness and novelty (%).

Neural architectures Bayesian networks
Methods Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty
D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70
GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40
DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

4.1 Reconstruction accuracy, prior validity, uniqueness and novelty

Being able to accurately reconstruct input examples and generate valid new examples are basic
requirements fowAe models. In this experiment, we evaluate the models by measuring 1) how often
they can reconstruct inpoiaGs perfectly (Accuracy), 2) how often they can generate valid neural
architectures or Bayesian networks from the prior distribution (Validity), 3) the proportion of unique
DAGS out of the valid generations (Uniqueness), and 4) the proportion of valid generations that are
never seen in the training set (Novelty).

We rst evaluate each model's reconstruction accuracy on the test sets. Following previous work
[3, 17], we regard the encoding as a stochastic process. That is, after getting the mean and variance
parameters of the posterior approximatepiizjG), we sample a from it asG's latent vector. To
estimate the reconstruction accuracy, we sarndle times for eacl®, and decode eachl0 times

too. Then we report the average proportion of the 100 decodead that are identical to the input.

To calculate prior validity, we sample 1,000 latent vectofsom the prior distributiorp(z) and

decode each latent vector 10 times. Then we report the proportion ofbsstid in these 10,000
generations. A generat@dhG is valid if it can be read by the original software which generated the
training data. More details about the validity experiment are in Appendix M.1.

We show the results in Table 1. Among all the models/aAE ands-vAE generally perform the best.

We nd that D-VAE, S-VAE andGrapRNN all have near perfect reconstruction accuracy, prior validity

and novelty. Howeve-VvAE ands-VvAE show higher uniqueness, meaning that they generate more
diverse examplessCN andDeepsMG have worse reconstruction accuracies for neural architectures
due to nonzero training losses. This is because the simultaneous message passing scheme in them
focus more on learning local graph structures, but fail to encode the computation represented by the
entire neural network. Besides, the sum pooling after the message passing might also lose some
global topology information which is important for the reconstruction. The nonzero training loss of
DeepsMG acts like an early stopping regularizer, makimgepsMG generate more unique graphs.
Nevertheless, reconstruction accuracy is much more important than uniqueness in our tasks, since we
want our embeddings to accurately remap to their original structures after latent space optimization.

4.2 Predictive performance of latent representation.

In this experiment, we evaluate how well the learned latent embeddings can predict the corresponding
DAGS' performances, which testsvae's unsupervised representation learning ability. Being able

to accurately predict a latent point's performance also makes it much easier to search for high-
performance points in this latent space. Thus, the experiment is also an indirect way to evaluate
aVAE latent space's amenability faraG optimization. Following 8], we train a sparse Gaussian
process $GP) model B3] with 500 inducing points on the embeddings of training data to predict the
performance of unseen test data. We includesthetraining details in Appendix L.

Table 2: Predictive performance of encoded means. We use two metrics to evaluate
the predictive performance of the
Neural architectures Bayesian networks latent embeddings (given by the
Methods RMSE Pearsons RMSE Pearson's mean of the posterior approximations
D-VAE 0.384 0.002 0.9200.001 0.3000.004 09590001 0 (ZjG)). One is therRMSE between
S-VAE 0.478 0.002 0.8730.001 0.3690.003 0.9330.001 thescGPpredictions and the true per-
GraphRNN 0.7260.002 0.669 0.001 0.7740.007 0.641 0.002 i
GCN 0.4850006 08700001 05570006 0.8360.002 formalmqes. Th? other is tge Pearson
DeepGMG 0.4330.002 0.8970.001 0.7880.007 06250002 Correlation coef cient (or Pearson's
r), measuring how well the predic-
tion and real performance tend to go
up and down together. A smatiMsE and a large Pearsorrsindicate a better predictive performance.

P # "% P # HSL 1'% % 1&#'] 1&##'(1%#$$

Figure 4: Top 5 neural architectures found by each model and their true test accuracies.

[| OO OO OO ONO) () [amn]® o ® 60\60 90‘(6

O+ ""(0*+) "H#S%& M (*, M™%, "™)*0 O+ 1"M#,%-- 1"#$%,. !""//%-/ !""0.%/' !""0.%,

Figure 5: Top 5 Bayesian networks found by each model and gheiscores (higher the better).

All the experiments are repeated 10 times and the means and standard deviations are reported. Table
2 shows the results. We nd that both th&1SE and Pearson's of D-VAE are signi cantly better

than those of the other models. A possible explanation istthate encodes the computation, while
aDAG's performance is primarily determined by its computation. TherefdreAe's latent embed-

dings are more informative about performance. In comparison, adjacency-matrix-based methods
(s-vAE andGrapmRNN) and graph-based methods with simultaneous message passingiid
DeepsMG) both only encode (local) graph structures without speci cally modeling computations on
DAG structures. The better predictive powemmsi/AE favors using a predictive model in its latent

space to guide the search for high performance graphs.

4.3 Bayesian optimization

We perform Bayesian optimizatioB©) using the two best models;VAE ands-VAE, validated by
previous experiments. Based on thepmodel from the last experiment, we perform 10 iterations of
batchso, and average results across 10 trials. Following Kusner g&]ain each iteration, a batch

of 50 points are proposed by sequentially maximizing the expected improvemgatquisition
function, using Kriging Believerd4] to assume labels for previously chosen points in the batch. For
each batch of selected points, we evaluate their decpbded’ real performances and add them back
to thesGpto select the next batch. Finally, we check the best-performawgs found by each model

to evaluate itDAG optimization performance.

Neural architectures. For neural architectures, we select the top 15 found architectures in terms
of their weight-sharing accuracies, and fully train them on CIFAR-10's train set to evaluate their
true test accuracies. More details can be found in Appendix H. We show the 5 architectures with the
highest true test accuracies in Figure 4. As we canse@E in general found much better neural
architectures thas-vAE. Among the selected architecturesyAe achieved a highest accuracy of
94.80%, whiles-VAE's highest accuracy was only 92.79%. In addition, all the 5 architectures of
D-VAE have accuracies higher than 94%, indicating thatAE's latent space can stably nd many
high-performance architectures. More details aboutnaus experiments are in Appendix H.

Bayesian networks.We similarly report the top 5 Bayesian networks found by each model ranked
by theirsic scores in Figure 50-VAE generally found better Bayesian networks tisavae. The

best Bayesian network found Im¢yvAE achieved aic of -11125.75, which is better than the best
network in the training set with aic of -11141.89 (a highesic score is better). Note thatc is in

log scale, thus the probability of our found network to explain the data is actually 1E7 times larger
than that of the best training network. For reference, the true Bayesian network used to generate
the Asia data haseic of -11109.74. Although we did not exactly nd the true network, our found
network was close to it and outperformed all 180,000 training networks. Our experiments show that
searching in an embedding space is a promising direction for Bayesian network structure learning.

4.4 Latent space visualization

In this experiment, we visualize the latent spaces oftEemodels to get a sense of their smoothness.

References

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Daphne Koller and Nir FriedmarRrobabilistic graphical models: principles and techniqu®8iT press,
2009.

Rafael Gobmez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-Lobato, Benjamin
Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-lparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alan Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules ACS central sciencel(2):268-276, 2018.

Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational autoencoder. In
International Conference on Machine Learnjmmges 1945-1954, 2017.

Matt J Kusner and José Miguel Hernandez-Lobato. GANs for sequences of discrete elements with the
Gumbel-softmax distributiorarXiv preprint arXiv:1611.040512016.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. TerpreT: A probabilistic programming language for program induetidiiv preprint
arXiv:1608.044282016.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models
of graphs.arXiv preprint arXiv:1803.033242018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehen-
sive survey on graph neural networksXiv preprint arXiv:1901.005962019.

Diederik P Kingma and Max Welling. Auto-encoding variational bay@Xiv preprint arXiv:1312.6114
2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative modalXiv preprint arXiv:1401.40822014.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-Directed Variational Autoencoder
for Structured DataarXiv preprint arXiv:1802.087862018.

David Weininger. SMILES, a chemical language and information system. 1. Introduction to methodology
and encoding ruleslournal of chemical information and computer scien@31):31-36, 1988.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational AutoencodersarXiv preprint arXiv:1802.034802018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Modelslnkernational Conference on Machine Learnjng
pages 5694-5703, 2018.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.119732018.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zugner, and Stephan Ginnemann. NetGAN: Generating
Graphs via Random WalksrXiv preprint arXiv:1803.008162018.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. Bdvances in Neural Information Processing Systgrages 7113-7124, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. IRroceedings of the 35th International Conference on Machine Learmiages
2323-2332, 2018.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph variational
autoencoders for molecule desigrXiv preprint arXiv:1805.0907,62018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generationAdtvances in Neural Information Processing
Systemgspages 6412—6422, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan

Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular ngerprints.
In Advances in neural information processing systgmages 2224-2232, 2015.

10

[21] VYujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.054932015.

[22] Thomas N Kipf and Max Welling. Semi-supervised classi cation with graph convolutional networks.
arXiv preprint arXiv:1609.0290,72016.

[23] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. Innternational conference on machine learnjpgges 20142023, 2016.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systerages 1024-1034, 2017.

[25] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classi cation. InThirty-Second AAAI Conference on Arti cial Intelligen@918.

[26] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networkgiiances in Neural
Information Processing Systenmages 5165-5175, 2018.

[27] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural netvawds.
preprint arXiv:1904.120582019.

[28] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learaiKgu preprint
arXiv:1611.015782016.

[29] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le,
and Alex Kurakin. Large-scale evolution of image classi easXiv preprint arXiv:1703.010412017.

[30] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and ef cient architecture search for
convolutional neural networksrXiv preprint arXiv:1711.04528017.

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognitionpages 8697-8710, 2018.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture seardtiv
preprint arXiv:1806.090552018.

[33] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Ef cient neural architecture search
via parameter sharin@rXiv preprint arXiv:1802.03268018.

[34] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editAtgomatic Machine Learning: Methods,
Systems, ChallengeSpringer, 2018. In press, available at http://automl.org/book.

[35] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural
architecture search with Bayesian optimisation and optimal transpohfidvances in Neural Information
Processing System2018.

[36] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for ef cient architecture searahXiv preprint arXiv:1711.004362017.

[37] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju,
Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networRsti krial
Intelligence in the Age of Neural Networks and Brain Compuytpages 293—-312. Elsevier, 2019.

[38] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware.arXiv preprint arXiv:1812.003322018.

[39] Rengian Luo, Fei Tian, Tao Qin, En-Hong Chen, and Tie-Yan Liu. Neural architecture optimization. In
Advances in neural information processing systez048.

[40] C Chow and Cong Liu. Approximating discrete probability distributions with dependence tEdes.
Transactions on Information Theqry4(3):462-467, 1968.

[41] Tian Gao, Kshitij Fadnis, and Murray Campbell. Local-to-global Bayesian network structure learning. In
International Conference on Machine Learnjmages 1193-1202, 2017.

[42] Tian Gao and Dennis Wei. Parallel Bayesian network structure learning. In Jennifer Dy and Andreas
Krause, editorsProceedings of the 35th International Conference on Machine Learmisigme 80 of
Proceedings of Machine Learning Reseanghges 1685-1694, Stockholmsmassan, Stockholm Sweden,
10-15 Jul 2018. PMLR. URhttp://proceedings.mlr.press/v80/gao18b.html

11

[43] Dominik Linzner and Heinz Koeppl. Cluster Variational Approximations for Structure Learning of
Continuous-Time Bayesian Networks from Incomplete Dat#dwaances in Neural Information Processing
Systemgspages 7891-7901, 2018.

[44] David Maxwell Chickering. Learning Bayesian networks is NP-completé.ehrning from datapages
121-130. Springer, 1996.

[45] Ajit P. Singh and Andrew W. Moore. Finding Optimal Bayesian Networks by Dynamic Programming,
2005.

[46] Changhe Yuan, Brandon Malone, and Xiaojian Wu. Learning Optimal Bayesian Networks Using A*
Search. IrProceedings of the Twenty-Second International Joint Conference on Atrti cial Intelligence
- Volume ThreglJCAI'11, pages 2186-2191. AAAI Press, 2011. ISBN 978-1-57735-515-1. doi: 10.
5591/978-1-57735-516-8/IJCAI11-364. URItp://dx.doi.org/10.5591/978-1-57735-516-8/
1IJCAI11-364 .

[47] Changhe Yuan and Brandon Malone. Learning Optimal Bayesian Networks: A Shortest Path Perspective.
Journal of Arti cial Intelligence Researgh8(1):23—-65, October 2013. ISSN 1076-9757. URIp:
//dl.acm.org/citation.cfm?id=2591248.2591250

[48] Do Chickering, Dan Geiger, and David Heckerman. Learning Bayesian networks: Search methods and
experimental results. IRroceedings of Fifth Conference on Arti cial Intelligence and Statistizges
112-128, 1995.

[49] Tomi Silander, Janne Leppéa-aho, Elias Jd&saari, and Teemu Roos. Quotient Normalized Maximum
Likelihood Criterion for Learning Bayesian Network Structureslriternational Conference on Arti cial
Intelligence and Statisticpages 948-957, 2018.

[50] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS: Continuous
optimization for structure learning. iddvances in Neural Information Processing Systgrages 9472—
9483, 2018.

[51] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG Structure Learning with Graph Neural
Networks.arXiv preprint arXiv:1904.10098019.

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximatorsNeural networks2(5):359—-366, 1989.

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.008262018.

[54] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translationarXiv preprint arXiv:1406.10782014.

[55] llya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systgmages 3104—-3112, 2014.

[56] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous spacéiv preprint arXiv:1511.063492015.

[57] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from
tree-structured long short-term memory networksXiv preprint arXiv:1503.000752015.

[58] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural netwolkE&€E Transactions on
Signal Processingd5(11):2673-2681, 1997.

[59] Francois Chollet. Xception: Deep learning with depthwise separable convolugiotis. preprint pages
1610-02357, 2017.

[60] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[61] Marco Scutari. Learning Bayesian Networks with the bnlearn R Packalpeirnal of Statistical
Software, Articles35(3):1-22, 2010. ISSN 1548-7660. doi: 10.18637/jss.v035.i03. bRis:
/lwww.jstatsoft.org/v035/i03

[62] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures

and their application to expert systendsurnal of the Royal Statistical Society. Series B (Methodological)
pages 157-224, 1988.

12

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-iivasichs in
neural information processing systemsages 1257-1264, 2006.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to parallelize
optimization. InComputational intelligence in expensive optimization problgrages 131-162. Springer,
2010.

Tom White. Sampling generative networksXiv preprint arXiv:1609.04468016.

Marc-André Zéller and Marco F Huber. Survey on automated machine learném¥iv preprint
arXiv:1904.120542019.

Jonas Mueller, David Gifford, and Tommi Jaakkola. Sequence to better sequence: continuous revision of
combinatorial structures. limternational Conference on Machine Learnjqmages 2536-2544, 2017.

Nicolo Fusi, Rishit Sheth, and Melih Elibol. Probabilistic matrix factorization for automated machine
learning. InAdvances in Neural Information Processing Systgrages 3352—-3361, 2018.

Benjamin Yackley and Terran Lane. Smoothness and Structure Learning by Prokyerimational
Conference on Machine Learning012.

Blake Anderson and Terran Lane. Fast Bayesian network structure search using Gaussian processes. 2009.
Available at https://www.cs.unm.edu/ treport/tr/09-06/paper.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimizatiarXiv preprint
arXiv:1412.69802014.

13

